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Abstract

As people age, their brains undergo various structural transformations, primarily involving tissue loss. Accelerated
changes can lead to serious conditions such as dementia or Parkinson’s disease. Early detection of such abnormal
changes in healthy individuals is crucial, as it may allow for early interventions to mitigate these consequences. How-
ever, continuous Magnetic Resonance Imaging (MRI) studies, necessary for such detection, are both time-intensive
and costly. Currently, several alternatives have been proposed to predict brain structural changes using advances in
machine learning and deep learning. However, most focus on patients with neurodegenerative diseases and none spe-
cialize in healthy adult populations. In this study, we aimed to predict structural brain changes over a span of nine
years in a healthy adult population. We used 3D T1-weighted MR images and explored two primary family of meth-
ods. The first family was based on Deformation Fields (DFs), while the second employed deep learning techniques
using Generative Adversarial Networks (GANs). DF-based methods were built on the hypothesis, that brain changes
observed in one subset of individuals could predict changes in others within the same population. The GAN-based
methods were inspired by advancements in predicting brain changes in infants and Alzheimer’s disease patients. We
evaluated the results of these methods using various assessment criteria, including image similarity, similarity of brain
regions, and total brain atrophy. Our results indicated that DF-based techniques were more effective and stable than
GANs, demonstrating a greater ability to capture subtle changes, particularly in the thalamus and cortex, as well as
significant changes in the ventricles in line with our hypothesis. In contrast, GAN-based methods primarily predicted
volumetric changes in the ventricles. This study provided a foundation for future research in brain change prediction,
highlighting the effectiveness of DF-based methods and suggesting improvements for GAN approaches.
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1. Introduction

1.1. Longitudinal Prediction

Longitudinal prediction involves anticipating how cer-
tain characteristics of an individual will change over
time based on data collected at earlier moments or theo-
retical models that describe possible patterns of change
(Caruana et al., 2015). In neurology, this approach is
crucial for forecasting the progression of neurodegen-
erative diseases such as Alzheimer’s, Parkinson’s, or
Multiple Sclerosis, enabling treatments before clinical
symptoms become evident and slowing disease progres-
sion (Arya et al., 2023; Coll et al., 2023; Li et al., 2019).
However, despite its benefits, longitudinal prediction
faces several challenges, as the accuracy of predictions

heavily depends on the quality and quantity of available
data, which is not always easy to obtain, especially in
the medical domain. (Bandettini, 2012; Bernal et al.,
2021; Modat et al., 2014).

1.2. Brain Changes with Aging

As the brain ages, significant structural and functional
changes occur that primarily affect cognition (Schulz
et al., 2022). On a large scale, grey matter (GM) and
white matter (WM), which contain neuronal cell bodies
and long-distance synapses, respectively, undergo atro-
phy, being replaced by cerebrospinal fluid (CSF) (Ge
et al., 2002). Some studies indicate that certain brain
structures are more susceptible to aging-related changes
(Choi et al., 2022; Fujita et al., 2023; Raz et al., 2005).
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Structures such as the hippocampus, thalamus, and cor-
tex, crucial for memory, sensory information transmis-
sion, and complex cognitive functions, show significant
atrophy. These changes are reflected in the expansion
of the ventricles, which dilate to compensate for brain
volume loss, and the increase of CSF around the brain
due to the reduction in the height between sulci and gyri
(Kaye et al., 1992).

Brain aging varies between healthy individuals and
those with neurodegenerative diseases (Habes et al.,
2016). In healthy individuals, structural changes are
generally slower and more subtle, influenced by genet-
ics and lifestyle (Mulugeta et al., 2022). In contrast,
in patients with diseases like Alzheimer’s, atrophy is
more accelerated and follows specific, well-documented
patterns (Pini et al., 2016). Consequently, numerous
predictive models for neurodegenerative diseases have
been developed (Arya et al., 2023).

To study these age-related brain changes, Magnetic
Resonance Imaging (MRI) has been used as a funda-
mental tool due to its ability to provide detailed visu-
alization of brain structures (Vemuri et al., 2015). Par-
ticularly, T1-weighted (T1w) MR images are especially
useful for anatomical visualization, offering good reso-
lution and contrast between GM, WM and CSF (Chen
et al., 2018). These images also allow the observation of
the subcortical structures sensitive to aging (Duan et al.,
2020), thereby facilitating the monitoring of structural
changes associated with aging and neurodegenerative
diseases.

1.3. Methods for Longitudinal Brain Prediction

Over the last decades, advances in machine learning
have offered a powerful tool in longitudinal neurolog-
ical studies, allowing the quantification of brain ag-
ing in patients with neurodegenerative diseases (Za-
paishchykova et al., 2024). Currently, two families of
methods are most commonly used to infer longitudinal
brain changes:

• The first and most used is based on Deformation
Fields (DFs). A DF is a fundamental element in the
area of non-rigid registrations (Crum et al., 2004)
and is based on a vector field that indicates how
each pixel (or voxel in 3D images) of a moving
image M should be displaced to align it with a fixed
image F.

• The second, more recent and based on advances
in deep learning, uses generative adversarial net-
works (GANs) (Goodfellow et al., 2014). A GAN
consists of two neural networks: a Generator that
creates images from an input and a Discriminator
that evaluates their realism, competing with each
other to continuously improve.

In the context of longitudinal brain prediction, meth-
ods of the first family seek to infer a DF that explains

structural changes over time, which can then be applied
to the initial brain images to obtain their evolution us-
ing image registration. Meanwhile, methods in the sec-
ond family train a GAN for image-to-image translation
(Isola et al., 2018a) using historical data (e.g., initial and
future images), and then predict the brain’s evolution
given the initial image.

1.4. Predicting Brain Changes in Healthy Popula-
tions

While the majority of research focuses on structural
brain changes caused by neurodegenerative diseases
(Camara et al., 2006; Rachmadi et al., 2019; Ravi et al.,
2019; Xia et al., 2021), there is significant value in
extending these predictive models to healthy popula-
tions. Predictive models tailored for healthy individu-
als could offer insights into normal aging trajectories,
identify atypical changes indicative of early disease on-
set, and highlight the impact of lifestyle and genetic
factors on brain health (Hedman et al., 2012). More-
over, such models could facilitate early interventions,
potentially mitigating the risk of developing neurode-
generative conditions (Rachmadi et al., 2019). How-
ever, predicting brain changes in healthy populations
presents challenges, such as the variability of aging pro-
cesses due to the influence of individual’s sociodemo-
graphic, health, genetics and lifestyle factors (Mulugeta
et al., 2022) and the need for extensive longitudinal
data (Bethlehem et al., 2021). This naturally leads to
the question: Is it possible to predict brain changes in
healthy populations?

1.5. Objective of the Master’s Thesis

The objective of this project is to address the previous
question and, specifically, to attempt to predict struc-
tural brain changes over a nine-year period in healthy
adults using 3D T1w MR images. with participants hav-
ing an average age of 60 years at the time of the initial
scan (baseline) and 69 years at the time of the second
scan (follow-up).

To achieve our objective, we implemented various
methods based on the two main families of longitudi-
nal prediction mentioned earlier:

• DF-Based Methods: These methods are based on
inferring a DF that captures the necessary volu-
metric changes to register the baseline and, conse-
quently, predict the follow-up scan. First, we cre-
ate a dataset of deformation atlases by registering
baseline to follow-up and obtaining the resulting
DFs from a subset of our population. Then, we im-
plement four different methods based on variants
of multi-atlas techniques (Iglesias and Sabuncu,
2014) to combine the obtained deformation atlases
and create the desired DF.
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• GAN-Based Methods: In this family, the meth-
ods are based on training a GAN with baseline and
follow-up scans from a subset of our population,
allowing it to learn the longitudinal changes. Then,
from the baseline of a new individual, the GAN can
predict the follow-up. To achieve this, we imple-
mented four different GANs based on the architec-
tures proposed by Peng et al. (2021), Huang et al.
(2022) and Choi et al. (2020) and adapted them to
our objective.

Finally, we conducted a statistical analysis to deter-
mine the best method of each family and overall. We
used various comparison metrics between the predicted
and expected images, based on image similarity, simi-
larity of brain structures relevant to aging (Choi et al.,
2022; Fujita et al., 2023), and total brain atrophy using
the Brain Parenchymal Fraction (BPF) (Rudick et al.,
1999).

2. State of the art

During our review of the state of the art, our primary
focus was on longitudinal brain changes, where most of
the works we found employed DF-based techniques or
GAN-based techniques, primarily for predicting brain
atrophy. Additionally, we expanded our search to fa-
cial aging studies as they also presented innovative tech-
niques in longitudinal prediction.

2.1. DF-Based Approaches

The prediction of brain atrophy in patients with
Alzheimer’s or other neurodegenerative diseases has
been extensively researched in recent years, primarily
using models that aim to infer a DF with specific volu-
metric changes. Smith et al. (2003) presented a biome-
chanical model using finite element method and applied
thermal loads to induce expansion or contraction in the
desired tissues by a DF. Camara et al. (2006) expanded
this approach with a thermoelastic model and added ac-
quisition artifacts to the generated image for greater re-
alism. Karacali and Davatzikos (2006) and Sharma et al.
(2010) presented models that minimize an energy func-
tion, penalizing the deviation between the desired vol-
umetric loss and that inferred from the Jacobian of the
DF, preserving brain topology and allowing free move-
ment of CSF. Modat et al. (2014) employed multimodal
registrations to obtain a set of velocity fields describing
actual brain changes, subsequently combining them to
generate DFs specific to each type of disease. Khanal
et al. (2017, 2016) developed a biophysical model to
generate a DF based on Stokes equations from fluid
mechanics, but with a non-zero mass source term to
allow the deformation of each tissue based on its pre-
scribed atrophy. Da Silva et al. (2020) used deep neural
networks to predict the DF from an atrophy map. In

a subsequent work, Da Silva et al. (2021) presented a
more comprehensive model that infers the atrophy map
from the patient’s medical data. More recently, Bernal
et al. (2021) proposed a cascade U-Net (Ronneberger
et al., 2015) approach to generate controlled synthetic
volumes based on probability maps of altered tissues.

Many of these methods propose quite accurate pre-
diction results. However, except for Modat et al. (2014)
and Da Silva et al. (2021), these results depend on pre-
specified atrophy maps. This reliance can be limit-
ing because intermediary scans between baseline and
follow-up are needed to construct these maps and ob-
serve specific changes for each patient. Given that
our dataset does not contain intermediary scans, we
propose DF-based models that infer changes based on
inter-individual similarity rather than relying on atrophy
maps.

2.2. GAN-Based Approaches

Recent research using GANs has demonstrated their
utility in predicting the progression of neurodegener-
ative diseases and aging in MRIs. Rachmadi et al.
(2019) proposed DEP-GAN to predict the evolution of
white matter hyperintensities in patients with small ves-
sel disease. This model combines GAN with Irregular-
ity Maps to generate Disease Evolution Maps. Simi-
larly, Ravi et al. (2019) and Xia et al. (2021) presented
models to predict the evolution of atrophy in brain MRI
as a function of age and Alzheimer’s disease status. The
former proposed DaniNet, a model that combines a con-
ditional deep autoencoder with a GAN, integrating bio-
logical constraints to predict realistic synthetic images.
The latter developed a network that does not require
longitudinal data for training, using identity-preserving
losses to maintain subject-specific features in the pre-
dicted images. More recently, Gadewar et al. (2023)
employed a style-transfer-based architecture to predict
brain changes in subjects aged 60 to 79, using multiple
age and sex-specific domains. In the field of infant brain
development, Peng et al. (2021) and Huang et al. (2022)
focused on longitudinal prediction of structural and con-
trast changes in infants over the first year of life. The
first work introduced MPGAN, which combines a fea-
ture extractor with a GAN to generate high-quality im-
ages using perceptual loss. The second work addressed
the problem differently with MGAN, a GAN-based net-
work that uses spatial and frequency information from
the baseline to predict metamorphic changes.

All these approaches underscore the capability of
GANs for predicting brain changes, but they present
several limitations. First, training with 2D slices (Gade-
war et al., 2023; Rachmadi et al., 2019; Ravi et al.,
2019; Xia et al., 2021), which in most cases is not a
choice but rather unavoidable due to lack of computa-
tional resources, may result in the loss of inherent 3D in-
formation in structural MRI. Second, although training
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without longitudinal data is innovative (Gadewar et al.,
2023; Xia et al., 2021), it lacks mechanisms to verify the
results and guide the network toward individual-specific
predictions. Finally, most of the presented works vali-
date their results using global image metrics, which do
not detect subtle structural brain changes, mainly in sub-
cortical regions, which are important in brain aging.

In three of our proposed GAN-based models, we ad-
dress the challenge of loss of 3D information by em-
ploying 3D models and reducing image bit-depth to
conserve memory. We overcame the second challenge
by leveraging our dataset’s longitudinal images. We
meticulously evaluate model performance and guide
training through tailored loss functions designed for
individualized longitudinal changes. Furthermore, we
present results specific to different brain regions and
evaluate them using different metrics.

2.3. Facial Aging

Studies on facial aging propose a different and innova-
tive approach that can be adapted for longitudinal brain
prediction, as demonstrated by Ravi et al. (2019) and
Gadewar et al. (2023). Among the most notable meth-
ods found are those by Antipov et al. (2017) and Choi
et al. (2020), which propose GAN-based models. The
former proposed Age-cGAN, which generates aged im-
ages while preserving the individual’s identity. The pro-
cess uses an encoder to find an optimal latent vector al-
lowing the generator to reconstruct the image; then, the
age category in the generator’s input is changed to pro-
duce the image with the desired age. To ensure identity
preservation, a pretrained facial recognition network is
used. In the second method, they proposed StarGAN-
v2, a network that can transform images from one do-
main to another with diversity and variability. It im-
plements a style encoder that extracts features (e.g.,
hairstyle and facial characteristics) from an image A
and a generator that adds those features to an image B.
Some more recent works implemented diffusion models
(Sohl-Dickstein et al., 2015). In Chen and Lathuilière
(2023), they used a model that inverts the input im-
age to a latent noise and performs local age-guided text
and attention control editing to achieve precise and re-
alistic transformations. In another method proposed by
Banerjee et al. (2023), a latent diffusion model with con-
trastive and biometric losses is used, preserving identity
and achieving realistic and high-fidelity age modifica-
tions.

These approaches offer different sources of inspira-
tion for longitudinal prediction. However, all these
methods rely on 2D images and must be adapted to
work with 3D MRI scans, which could be challenging
due to misaligned slices. To overcome this limitation
in our fourth GAN-based model, we ensure accurate
alignment between baseline and follow-up during pre-
processing. Additionally, we implemented a dataloader

capable of handling inter-individual slice alignment.

3. Material and methods

3.1. Data

In our study, we used a total of 703 individuals from the
Nord-Trøndelag Health Study (HUNT) (Åsvold et al.,
2022), a longitudinal study involving a healthy popu-
lation from Nord-Trøndelag, Norway, since 1984. Our
study focuses solely on using the 3D T1w MR images
obtained during the third wave (HUNT3) (Håberg et al.,
2016) in 2009 to predict images from the fourth wave
(HUNT4) collected in 2018. The HUNT3 images were
obtained using a 1.5T General Electric scanner with a
resolution of 1.25×1.25×1.20 mm3, while the HUNT4
images were acquired using a 3T General Electric scan-
ner with an isotropic resolution of 1 mm. Appendix A
provides more information about HUNT3 and HUNT4
T1w MR scans. In this study, we randomly divided the
dataset into two main sets for training and testing, with
620 and 83 individuals respectively. Depending on the
method employed, validation subsets were also taken
from the training set.

3.2. Preprocessing

Given that the baseline and follow-up were obtained
nine years apart and with different magnetic field
strengths, we harmonized the whole dataset applying
a preprocessing. This was performed using FreeSurfer
tools (Fischl, 2012) and its deep learning implementa-
tion FastSurfer (Henschel et al., 2020).
We began the preprocessing by converting the images
to 1mm isotropic MP-RAGE format using the SyntSR
tool. This was done for both HUNT3 and HUNT4 im-
ages, as employing this network also facilitated bias
field correction and contrast standardization, as indi-
cated in the original work (Iglesias et al., 2023, 2021).
Then, we aligned the individuals to the MNI-ICBM
152 2009c space (Fonov et al., 2011, 2009) using
affine registration with mri robust register (Reuter et al.,
2010). To ensure that each individual’s baseline was
adequately aligned with their follow-up, we first regis-
tered the baseline to the MNI space and then registered
the follow-up to its corresponding registered baseline
scan. Finally, we performed skull stripping using Synth-
Strip (Hoopes et al., 2022), followed by normalization
to extract only the brain region within an intensity range
of [0, 1]. During preprocessing, we obtained two brain
masks, with and without the cerebellum, and three types
of tissue segmentation. The first segmentation included
the 3 primary tissues: CSF, GM, and WM. The second
segmentation delineated 35 tissues, incorporating sub-
cortical structures, while the third segmentation encom-
passed 95 tissues, including both subcortical structures
and various cortical regions. The final size in voxels of
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the resulting baseline and follow-up images, along with
their segmentations and masks, was 193 × 229 × 193.
Figure 1 shows the complete preprocessing pipeline and
the results of the obtained images.

Figure 1: Preprocessing Pipeline: Steps performed during prepro-
cessing and the obtained brain masks and segmentations.

Notation and Main Objective

Hereafter, we will refer to the training set for the base-
line scans as T X0 and for the follow-up scans as T X1,
while the test set is referred to as X0 for the baseline
and X1 for the follow-up scans. Our primary objec-
tive is to find x̂1, the best possible approximation of
x1 ∈ X1, based on the corresponding baseline x0 ∈ X0.
To achieve this, we employed several methods derived
from the two main families of longitudinal brain predic-
tion, which are detailed in the subsequent sections.

3.3. DF-Based Methods

Hypothesis — Our primary hypothesis for this fam-
ily of methods is that the brain changes of an individual
from a specific population could be predicted using the
brain changes of other individuals from the same popu-
lation.

The first step to verify our hypothesis was an inter-
individual statistical analysis. We evaluated the simi-
larity in both baseline and follow-up scans to determine
if individuals with similar brain structures at baseline
maintained this similarity at follow-up in our dataset.
For each individual I0, we identified the individual I1
with the highest baseline similarity to I0, and checked if
I1 remained the most similar to I0 at follow-up or was
among the top N most similar individuals. Table 1 and
Fig. 2 shows the results of this analysis. To compute
the similarity between individuals, we tested two met-
rics: the Structural Similarity Index (SSIM) introduced
by Wang et al. (2004), which ranges from -1 to 1, where
1 indicates perfect similarity, 0 indicates no similarity,
and -1 indicates perfect anti-correlation; and the mean
Dice coefficient across the three main tissues, which
ranges from 0 to 1, where 1 indicates perfect overlap.
For two tissues A and B, the Dice coefficient is defined
as follows:

dice =
2|A ∩ B|
|A| + |B|

We tested these two metrics to capture different as-
pects of brain structure similarity. SSIM provides a
global assessment of structural information and visual
quality, while the Dice coefficient focuses on tissue cor-
respondence.

Table 1: Inter individual similarity consistency (%)

Metric MS Top3 Top5 Top10 Top15

SSIM 67 93 97 99 100
Mean dice3 58 82 91 96 99

Probability that I1 is the most similar (MS) to I0 at follow-up or is
among the topN most similar individuals using different similarity
metrics.

Figure 2: Inter-Individual Similarities. Similarity between I0 and I1
at baseline and follow-up for all individuals using different metrics.

Results in Table 1 demonstrated that I1 was consis-
tently identified as the most similar individual to I0 at
follow-up with a probability of 67% using SSIM and
58% using the mean Dice coefficient. Additionally, I1
was among the top5 with over 90% probability using
both metrics. Furthermore, as shown in Figure 2 the
similarity between I0 and I1 remained stable from base-
line to follow-up. These results confirmed that individ-
uals with similar brain structures at baseline maintained
this similarity at follow-up in our dataset and motivated
us to proceed with the second part of the hypothesis
evaluation.

For this second part, we obtained a dataset of DFs
from the training data, which we called T D f with td f as
one of its elements. This was achieved by applying non-
rigid registrations to the images of T X0 towards their
corresponding images in T X1 using Elastix (Klein et al.,
2009). For these registrations, we used B-Spline trans-
formations with advanced normalized cross-correlation
as the similarity metric and a pyramidal approach. Ad-
ditional information about the registration can be found
in Appendix B.

Next, we calculated an average DF from n td fi, i ∈
[1, n], and used it to register the images of X0. The ob-
tained registered scans indicated an improvement in all
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individuals compared to the initial differences between
the baseline and follow-up scans. The results showed
a mean improvement of 4.1% for the Dice coefficient
of the CSF, as well as 0.7% and 0.5% for the GM and
WM, respectively. The image similarity based on the
SSIM also improved by 0.8%. More details about these
results can be found in the Results Section 4.2. These
findings confirmed that the use of an average DF, based
on a subset of a population, can effectively infer some
brain changes in the remaining population, corroborat-
ing our initial hypothesis. This prompted us to develop
our DF-based methods explained in the following sec-
tions.

Objective — Our objective with the following four
methods is to infer d̂ f , a DF that explains the longitu-
dinal volumetric changes, allowing us to register x0 to
obtain x̂1. We base these methods on multi-atlas tech-
niques and an adaptation of the K-Nearest Neighbors
algorithm to combine the elements of T D f and obtain
d̂ f .

3.3.1. Similar Images

Here, we attempted to use image similarity to infer d̂ f .
Initially, we calculated the similarity s between x0 and
each tx0 ∈ T X0, selecting the n most similar tx0i with
their corresponding td fi, i ∈ [1, n]. Subsequently, we
weighted the td fi with their respective normalized si and
computed their average, resulting in d̂ f (see Equation
(1)). In the implementation of the method, we used L1
normalization. Additionally, we tested different similar-
ity metrics and values for n to evaluate their impact on
the final predictions.

d̂ f =
∑n

i=1 si · td fi∑n
i=1 si

(1)

3.3.2. Similar Images with Registration

In this method, we followed a similar approach to the
previous one, but with one key difference: after iden-
tifying the n td fi, we registered them to the x0 space
before computing the weighted average (see Equation
(2)). We adopted this approach because we considered
that obtaining a more precise alignment of the starting
point of each vector from a given td fi with respect to the
image x0 might result in a more accurate deformation of
certain tissues. To register a td fi to the x0 space and ob-
tain td fix0 , we first applied a registration of txi to x0 to
obtain the necessary deformation, and subsequently ap-
plied it to the corresponding td fi. All registrations were
made using Elastix, and we tested two different types of
registration, affine and B-spline.

d̂ f =
∑n

i=1 si · td fix0∑n
i=1 si

(2)

3.3.3. Similar Patches

In this approach, we aimed to infer d̂ f by patches to
capture more anatomical variability. First, we obtained
m overlapping uniform patches p of size w that cov-
ered the entire x0. Similarly, we proceeded with all
tx0 and their corresponding td f , generating tp and td f p
respectively. Then, given a patch p j, j ∈ [1,m], we
calculated the similarity s between p j and each tp j.
Next, we selected the n most similar tp j and finally we
computed the weighted average of their corresponding
td f p j to obtain d̂ f p j ∈ d̂ f . This process was repeated
for each p j to reconstruct the complete d̂ f (see Equa-
tion (3)). During reconstruction, we used a spline-based
method to address overlapping, which helped minimize
artifacts in the overlapping areas. In this approach, we
set w = 32 and an overlap of 50%, both values were
experimentally favorable. During the evaluation of the
method, we used different values of k and n to assess
their effects on the final prediction.

d̂ f =
⊕m

j=1
d̂ f p j (3)

Where
⊕

denotes the operation of patch concatena-
tion with overlap, and each d̂ f p j is constructed as fol-
lows:

d̂ f p j =

∑n
i=1 s ji · td f p ji∑n

i=1 s ji

The similarity metric used between patches is based
on a weighted Dice coefficient with k tissues, as ex-
plained in the following equation:

s j =

∑k
q=1(wq + a1q + a2q) · diceq(p j, tp j)

2 +
∑k

q=1 wq
(4)

Where diceq(x, y) is the Dice coefficient for tissue q
between the segmentation with k tissues of x and y; a1q

and a2q are the areas of tissue q with respect to the patch
size; and wq is a weigh given to each tissue.

3.3.4. Similar Tissues

Here, we aimed to reconstruct d̂ f by tissues to allow
variability and ensure that each individual tissue de-
forms consistently. To do this, we used the segmentation
with k tissues segk0 of x0 as well as the segmentations
tsegk0 of tx0 and reconstructed a unique DF for each tis-
sue, subsequently combining them to form d̂ f . This was
done very similarly to the patch approach 3.3.3 but with
tissue regions instead of patches (see Equation (5)). In
this case, there was no overlapping since segk0 contains
mutually exclusive tissues. The used similarity metric
between the tissues was the Dice coefficient, and during
the evaluation, we used different values of k and n.

d̂ f =
⋃k

j=1
d̂ f seg j (5)
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Where
⋃

denotes the operation of tissue concatena-
tion and each d̂ f seg j is constructed as follows:

d̂ f seg j =

∑n
i=1 si · td f seg ji∑n

i=1 si

3.4. GANs-Based Methods

Objective — Our primary objective with the follow-
ing four methods is to train a GAN to predict T X1 from
T X0, enabling it to learn to infer longitudinal structural
changes. This way, given an x0, the network’s generator
can predict x̂1. To this end, we implemented the archi-
tectures proposed by Peng et al. (2021), Huang et al.
(2022), and Choi et al. (2020) and adapted them to our
objective. In the following methods, we refer to t̂x1 as
a predicted image during training and tx1 ∈ T X1 as the
expected image.

3.4.1. MPGAN

In this approach, we used the multi-contrast perceptual
adversarial network MPGAN proposed by Peng et al.
(2021). Originally, this network was built to predict lon-
gitudinal changes in infant brains during the first year of
life, which undergo quite different changes compared to
adult aging brains (Huang et al., 2022). In the original
paper, they proposed a simple architecture and a multi-
modal one; in our case, we only implemented the first
one given our dataset.

Network Architecture — The MPGAN architecture
consists of three main components: A Generator (G) us-
ing a U-Net architecture with residual blocks in both the
encoder and decoder; a Discriminator (D) that is a clas-
sifier composed of convolutional layers followed by an
output layer with sigmoid activation; and a pre-trained
feature extractor (ϕ) to extract perceptual features. To
build ϕ they used the encoder part of the architectured
proposed by (Zhou et al., 2019) which is a U-Net model
trained with 3D medical images.

Loss Functions — The original paper proposed three
loss functions: An adversarial loss (Ladv), original to
GANs (Goodfellow et al., 2014), which helps t̂x1 ap-
proach the distribution of T X1. A voxel-wise recon-
struction loss (Lvr), as introduced in Isola et al. (2018b),
which ensures consistency between t̂x1 and tx1 by pe-
nalizing voxel-to-voxel differences with an L1 loss.
Finally, a perceptual loss (Lp), which helps produce
sharper and more detailed images by penalizing the dif-
ference between the features extracted from t̂x1 and tx1
using ϕ. The total loss function used is the following:

Ltotal = Ladv + αLvr + βLp (6)

Implementation Details — We used TensorFlow
and built the proposed architecture from scratch follow-
ing the instructions of the original paper, as a functional
source code was not available. The Adam optimizer
(Kingma and Ba, 2017) with an initial learning rate of
2e-4 was employed, and we applied a decay of 0.5 and
a patience of 10 epochs based on the validation loss.
The trade-off coefficients α and β were both set to 25, as
proposed in the original paper.

To train the network, we used 80% of the images
from T X0 for training and 20% for validation in each
epoch. The training process was conducted for a to-
tal of 100 epochs with a batch size of 1, applying early
stopping with a patience of 10 to avoid overfitting. In or-
der to save GPU memory and train the model using the
complete 3D volumes, we used TensorFlow Mixed Pre-
cision, which employs both 16-bit and 32-bit floating-
point types during training.

3.4.2. MPGAN + Segmentation Loss

Here, we used the same MPGAN network explained
in the previous section 3.4.1, with the addition of a
segmentation similarity constraint. This was done to
increase the similarity of the three main brain tissues
(CSF, GM, WM) between t̂x1 and tx1. In this way, we
ensured that global structures and specific tissue details
remained consistent, improving the accuracy of seg-
mentation and the structural quality of the generated im-
ages.

Loss Functions — To calculate the segmentation loss
(Lseg), we used a dice-based loss between the segmenta-
tion with three tissues of t̂x1 and tx1 as shown below:

Lseg = 1 −
1
3
(
diceCSF(t̂x1, tx1)

+ diceGM(t̂x1, tx1)
+diceWM(t̂x1, tx1)

) (7)

Where diceq(x, y) is the same as used in Equation (4).
For tx1, the segmentation with three tissues obtained
during preprocessing was used. However, for t̂x1, we
had to calculate the segmentation during training. To
achieve this, we used a Gaussian Mixture Model with
priors based on the mean and variance of the tissues
from tx1. This allowed to calculate a segmentation for
CSF, GM, and WM quickly and easily, with the possi-
bility of gradient propagation in the loss function. Fi-
nally, we modified the total loss function as follows:

Ltotal = Ladv + αLvr + βLp + γLseg (8)

Implementation Details — The implementation was
similar to the one described in the previous section
3.4.1, with the only difference being that we adjusted



NeuroSculpt: Forecasting Brain Structure 9 Years Ahead Using Structural MRI 8

α, β, and γ to 25, 20, and 15 respectively. These values
were found to provide the best results for the validation
set.

3.4.3. MGAN

For this method, we used the metamorphic generative
adversarial network (MGAN) proposed by Huang et al.
(2022). Similar to Peng et al. (2021), the original objec-
tive was to predict longitudinal changes in infant brains
during the first year of life. However, in this work a 3D
patch-based approach using spatial and frequency do-
mains to capture metamorphic changes is proposed.

Network Architecture — The MGAN architecture
is based on a CycleGAN (Zhu et al., 2020) and consists
of two generators and two discriminators. Each gen-
erator includes an encoder, a spatial-frequency transfer
block (SFT), and a decoder. The SFT is a dual-branch
structure that captures and transforms information in
both spatial and frequency domains. For the spatial do-
main, residual modules in series are used, and for the
frequency domain, a discrete wavelet transform (DWT)
is applied, followed by residual modules in series and
finally an inverse DWT. This allows the preservation of
structural and contrast details of the tissues throughout
the reconstruction. On the other hand, the discrimina-
tors have a U-shaped architecture and generate voxel-
level quality probability maps, guiding the generators to
focus on the most challenging regions. Both the dis-
criminators and generators use deep supervision in the
decoder to strengthen the gradient flow and promote
the learning of useful representations at multiple scales
(Karnewar and Wang, 2020). It is worth noting that due
to the cyclical nature of the network, it would also be
possible to predict the baseline from the follow-up, but
we did not use this functionality.

Loss Functions — The loss functions used in the pa-
per include an adversarial loss (Ladv), a paired loss (Lp),
and a cyclic loss (Lcyc) at different resolutions. The Ladv,
has the same objective as explained earlier. The Lp con-
sists of several components: a quality loss (LQ), which
penalizes voxel-to-voxel differences with an L1 loss, us-
ing the discriminator results to focus on the more chal-
lenging regions to predict; a texture loss (LT ), which en-
sures that the texture of t̂x1 is similar to that of tx1; and
a frequency loss (LF), which compares the wavelet rep-
resentations between t̂x1 and tx1 to preserve structural
details. Finally, the cyclic loss (Lcyc), original to Cycle-
GANs (Zhu et al., 2020), ensures cyclical consistency
between the generated and real images, warranting that
a transformed image, when reverted, is similar to the
original. The total loss function implemented at each
scale is the following:

Ltotal = Ladv + αLp + βLcyc (9)

Where:

Lp = LQ + aLT + bLF (10)

Implementation Details — We used TensorFlow
and built the proposed architecture from scratch follow-
ing the instructions of the original paper, as the source
code was not available. The Adam optimizer (Kingma
and Ba, 2017) with an initial learning rate of 1e-4 was
employed, and we applied a decay of 0.5 and a patience
of 10 epochs based on the validation loss. The trade-off
coefficients for α, β, a, and b were set to 1, assuming
these values were used in the original paper since they
were not explicitly mentioned.

To train the network, we extracted patches of size
64 × 64 × 64 with 50% overlap from the images of
T X0. These patches were selected to contain at least
15% brain tissue to avoid creating background-biased
generators. The training process was conducted for a
total of 10,000 epochs with a batch size of 1, ensuring
that all patches from 80% of T X0 were used for training,
while the remaining 20% were reserved for validation.

3.4.4. StyleGAN

In this method, we used the StarGAN-V2 network pro-
posed by Choi et al. (2020). This network was origi-
nally designed for style transfer between multiple do-
mains with diversity in the generated images using a
single Generator. In our case, we adapted the network
similar to the work of Gadewar et al. (2023), to predict
x̂1 from x0 and a desired style s, taken from an element
of T X1.

Network Architecture — The StarGAN v2 architec-
ture is based on four main elements: a generator (G), a
mapping network (F), a style encoder (E), and a dis-
criminator (D). G uses a U-Net-like architecture with
an encoder, bottleneck, and decoder constructed with
residual blocks. The style s is injected into the decoder
during the image reconstruction using adaptive instance
normalization (Huang and Belongie, 2017). F is a mul-
titask multilayer perceptron that generates a style code
s from a latent vector z and a domain y. In our imple-
mentation, z is a vector randomly sampled from a Nor-
mal Gaussian Distribution, and y is an integer indicating
whether the style belongs to the baseline or the follow-
up. E is a multitask encoder that, given an image and
its corresponding domain, extracts the style code s. Fi-
nally, D is a multitask discriminator that differentiates
between real and generated images of a domain y. In
this context multitask refers to the fact that the network
has different output branches, one for each domain y. It
is worth noting that all the networks were trained simul-
taneously. Due to the network’s design, it is also possi-
ble to predict the baseline from the follow-up. However,
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similar to the previous method, we will not focus on that
functionality.

Loss Functions — The proposed loss functions con-
sist of an adversarial loss(Ladv) and a cyclic loss (Lcyc)
with the same purpose as in the previous methods; a
style reconstruction loss (Lsty) that forces the generator
to use the style code s when generating the image, ex-
tracting and comparing the style of t̂x1 with the desired
style; and a style diversification loss (Lds) that encour-
ages the production of diverse images by regularizing
the generator to explore different styles. The total loss
function used is the following:

Ltotal = Ladv + λcycLcyc + λstyLsty + λdsLds (11)

Implementation Details — We used the code pro-
posed by the original paper implemented in PyTorch
and adapted it to our dataset. The training parameters
we used were exactly the same as those proposed in the
original paper.

To train the network, we used 2D slices extracted
from the sagittal plane of T X0 and T X1. The 2D
slices were extracted to contain at least 15% brain tissue
to avoid creating a background-biased generator. The
training process was conducted for a total of 100,000
epochs with a batch size of 4. It is worth mentioning
that the dataloader we designed ensured that the net-
work was trained with slices aligned among individuals.

3.5. Post-Processing

After obtaining the results, we applied post-processing
to remove artifacts introduced during prediction, en-
hance overall image quality, and obtain brain masks and
segmentations to evaluate the results. This was per-
formed differently for both families:

• DF-Based Methods: We applied the brain mask
and normalized the brain area to eliminate edge ar-
tifacts caused by interpolation during the registra-
tion. To obtain the brain masks and segmentations
the initial segmentations and brain masks were reg-
istered with Elastix using the inferred DF.

• GAN-Based Methods: Here, we first processed
the images with SynthSR to eliminate common
GAN artifacts (Lee et al., 2023) and correct errors
in image reconstruction from 3D patches (MGAN
3.4.3) or 2D slices (StyleGAN 3.4.4). Then, we
performed skull stripping, followed by normaliza-
tion in the brain area to remove the skull and back-
ground added by SynthSR. Finally, to obtain the
brain masks and segmentations we used FastSurfer.

Computational Resources

For preprocessing and postprocessing, we used
FreeSurfer installed on a Linux Ubuntu 18 PC with an
Intel(R) Core(TM) i7-7700 CPU and 32GB of RAM,
and FastSurfer Docker-version on a Windows 11 PC
with a Intel(R) Core(TM) i9-12900H CPU, 32GB of
RAM, and an NVIDIA GeForce RTX 3060 GPU with
6GB. For training deep learning methods, we utilized
the High Performance Computing cluster at NTNU
(IDUN). Specifically, we used clusters with NVIDIA
V100 16GB GPUs for models trained using 2D slices
and patches, and clusters with NVIDIA A100 40GB
GPUs for models trained with full 3D volumes.

4. Results

In this section, we present the predicted scans obtained
for each method using the test set. These predictions are
evaluated with respect to the actual follow-up scans to
verify their exactitude. To help the reader have a com-
prehensive overview of the evaluation we performed to
choose the best method for each family and overall, we
have structured this section in three main parts: First,
we present the initial similarity between the baseline
and follow-up scans of each individual and use it as the
lower bound (LB), as it is expected that the results from
the implemented methods will surpass this. Second, we
present the results for each family separately and choose
the best among them. Finally, we compare the best re-
sults from each family, conducting a more exhaustive
analysis to decide the overall best method.

Evaluation Metrics

During the evaluation of the results, we used various
comparison metrics based on global image similarity,
cerebral tissue segmentation, and brain atrophy.

To choose the best method for each family, we used
SSIM and the mean Dice coefficient of the three main
tissues. This allowed us to quickly and accurately se-
lect the best results based on global structure and tissue
correspondence.

For the more detailed analysis, we used the Dice
coefficient, the Absolute Symmetrized Percent Volume
Change (ASPVC), the Volume Fraction (VF), and the
Brain Parenchymal Fraction (BPF). ASPVC has been
used in other analyses of structural changes as it pro-
vides a dimensionless measure of variability between
tissues (Khanal et al., 2016). For two tissues A and B,
ASPVC is defined as:

ASPVC =
|A − B|

0.5(A + B)
· 100%

On the other hand, VF helped us evaluate whether
there was an increase or decrease in tissue volume. For
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a tissue A, VP is defined as:

VF =
A

Inter cranial volume
· 100%

Finally, we used BPF to compute the atrophy inferred
from the predicted scans, which is typically defined as
the ratio of brain parenchymal volume to the intracranial
volume. In our case, we computed the BPF using the
GM and WM volumes (VGM , VWM), excluding cerebel-
lum regions from the segmentation with three tissues,
and the brain mask without cerebellum (Bmaskncrb), as
follows:

BPF =
VGM + VWM

Bmaskncrb

It is important to note that, for calculating both the
BPF and the VF, we used the intracranial volume from
the baseline scan to avoid potential segmentation er-
rors. This approach is supported by extensive research
demonstrating that total intracranial volume remains
constant with aging (Brezova et al., 2014; Hansen et al.,
2015; Pintzka et al., 2015).

Significance Evaluation

To determine if the results of our methods were signif-
icantly different from the LB, we performed a paired
t-test and we considered p-values below 0.01 to be sta-
tistically significant.

4.1. Initial Similarity

We started by evaluating the initial similarity between
baseline and follow-up scans, setting this as LB for our
methods. Table 2 and Figure 3 illustrate these initial
similarities, providing a foundation for subsequent anal-
yses.

Table 2: Initial Similarities Between Baseline and Follow-up Scans

Initial SSIM % ↑ Mean dice %
CSF ↑ GM ↑ WM ↑

LB 94.6 ± 1.0 84.3 ± 4.8 80.5 ± 2.6 90.0 ± 1.8

Initial similarity metrics between baseline and follow-up scans, in-
cluding SSIM and mean Dice coefficient for CSF, GM, and WM. The
shown values are the mean of the test set, and the ± values represent
the standard deviation. ↑ indicates that higher values are better.

4.2. Family-Wise Results

4.2.1. DF-Based Results

Hypothesis results — Before implementing the DF-
based family of methods we evaluated our primarily hy-
pothesis with different values for n to verify its influence
and modify this parameter in the actual methods. Table
3 shows the similarity of these results with the actual
follow-up.

Figure 3: Baseline and Follow-up Scans. (A) shows the T1w scans in
the first row and the segmentation of the three main tissues (CSF, GM,
and WM) in the second row. (B) shows the difference image between
the baseline and the follow-up; the lighter the color in a region, the
more differences are present.

Table 3: Hypothesis Results - Similarities with Follow-up

n SSIM % ↑ Mean dice%
CSF ↑ GM ↑ WM ↑

10 95.1 ± 0.8 87.8 ± 3.1 *80.8 ± 2.1 90.4 ± 1.3
100 95.3 ± 0.8 88.4 ± 3.0 81.2 ± 2.3 90.5 ± 1.4
200 95.3 ± 0.8 88.3 ± 3.0 81.3 ± 2.3 90.5 ± 1.5
300 95.3 ± 0.8 88.3 ± 3.0 81.3 ± 2.3 90.5 ± 1.5
620 95.4 ± 0.8 88.3 ± 3.1 81.3 ± 2.3 90.5 ± 1.5

Similarity metrics between hypothesis predictions and actual follow-
up scans using different values for n. * indicates p-values > 0.01.

The results obtained indicate a slight improvement
between n = 10 and n = 100 but for n > 100, the
changes are extremely small or negligible.

DF-Based Methods Results — For each method in
this family, we evaluated different settings. For the Sim-
ilar Images method 3.3.1, we tested two similarity met-
rics (SSIM and the mean Dice coefficient) and three val-
ues for n = [5, 10, 100]. In the Similar Images with Reg-
istration method 3.3.2, we evaluated two types of regis-
trations (affine and non-rigid using B-Splines) and set
n = 5. It is worth mentioning that the B-spline registra-
tion parameters were chosen to prioritize faster registra-
tion times over exhaustive optimization. For the Similar
Patches method 3.3.3, we used different numbers of tis-
sues k = [3, 95] to evaluate similarity between patches
and two values for n = [10, 100]. The hyperparameter
w in Equation 4 was set to 1 for all the tissues. Finally,
for the Similar Tissues method 3.3.4, we tested different
numbers of tissues to create the DF k = [3, 95] and two
values for n = [10, 100]. Table 4 shows the similarity
with the follow-up for each method with their respec-
tive settings, and Figure 4 shows the predictions using
the best setting for each method.

In this family of methods, all segmentation results
were calculated using the registered segmentations.
However, for the best method, the segmentation was re-
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calculated from the predicted image using FastSurfer to
avoid interpolation errors in discrete values caused by
the registration. This result is also shown in Table 4
along with results obtained using ground truth deforma-
tions from the baseline to the follow-up scans through
non-rigid registration with Elastix. This latter result
could be interpreted as an upper bound (UB) for this
family of methods.

Table 4: DF-Based Methods Results - Similarities with Follow-up

Method SSIM % ↑ Mean dice %
CSF ↑ GM ↑ WM ↑

Images
ssim 5 95.3 ± 0.7 89.7 ± 2.3 81.1 ± 2.1 90.7 ± 1.4
ssim 10 95.4 ± 0.7 89.8 ± 2.4 81.5 ± 2.2 90.9 ± 1.4
ssim 100 95.4 ± 0.8 89.6 ± 2.7 81.5 ± 2.3 90.9 ± 1.5
dice 5 95.3 ± 0.7 89.6 ± 2.8 81.1 ± 2.1 90.7 ± 1.3
dice 10 95.4 ± 0.7 89.8 ± 2.8 81.4 ± 2.1 90.9 ± 1.3
-dice 100 95.4 ± 0.7 89.7 ± 2.8 81.6 ± 2.2 90.9 ± 1.3

Images Reg
aff dice 5 95.3 ± 0.7 89.8 ± 2.9 81.2 ± 2.1 90.7 ± 1.3
-bsp dice 5 95.4 ± 0.7 90.1 ± 3.0 81.8 ± 2.1 90.9 ± 1.3

Patches
seg3 10 95.5 ± 0.7 90.4 ± 2.8 82.1 ± 2.2 91.2 ± 1.4
seg3 100 95.5 ± 0.8 90.1 ± 2.9 82.1 ± 2.2 91.1 ± 1.4
-seg96 10 95.5 ± 0.7 90.5 ± 2.8 82.2 ± 2.2 91.2 ± 1.4
seg96 100 95.5 ± 0.8 90.2 ± 2.9 82.1 ± 2.2 91.1 ± 1.4

Tissues
seg3 10 95.5 ± 0.7 90.3 ± 2.5 81.6 ± 2.2 91.1 ± 1.4
seg3 100 95.5 ± 0.8 90.0 ± 2.7 81.7 ± 2.3 91.1 ± 1.4
-seg96 10 95.5 ± 0.7 90.4 ± 2.6 81.7 ± 2.3 91.1 ± 1.4
seg96 100 95.5 ± 0.8 90.1 ± 2.7 81.7 ± 2.3 91.1 ± 1.5

Best post 95.5 ± 0.7 92.2 ± 2.8 84.1 ± 2.4 92.2 ± 1.5

UB 97.1 ± 0.3 94.8 ± 1.4 86.9 ± 0.7 93.7 ± 0.3
Similarity metrics between DF-based methods predictions and follow-
up scans using different settings for each method. In the table, the
methods are referred to as Images, Images Reg, Patches, and Tis-
sues for Similar Images, Similar Images with Registration, Similar
Patches, and Similar Tissues methods, respectively. ’-’ indicates the
best method of each family, and the overall best method is indicated in
bold. Best post and UB refer to the best method with the recalculated
segmentation and the Upper Bound, respectively. ↑ higher is better.

As shown in Table 4 and Figure 4, all the results
improved with respect to the LB and exhibit p-values
< 0.01. The results of the methods are very similar
when varying their hyperparameters. Despite this sim-
ilarity, the patch-based and tissue-based methods show
slight improvements over the others, particularly in CSF
and GM for the patch-based method with 96 tissues and
n = 10, which led us to select it as the best DF-based
method.

4.2.2. GAN-Based Results

The next experiments we performed were using the
GAN-based family. For the MPGAN 3.4.1 and MP-
GAN + Segmentation Loss 3.4.2 methods, we per-
formed inference on the whole volume by feeding the
network with the baseline scans. For the MGAN

Figure 4: DF-based Methods Predictions. (A) Predictions of the
DF-based methods using their best settings, including the segmenta-
tions of the three main tissues and the difference images with respect
to the follow-up scans. (B) Prediction of the best method with the
segmentation recalculated and prediction using ground truth deforma-
tion.

method 3.4.3, we extracted patches of size 64x64x64
with 50% overlap from the entire baseline scans, gener-
ating predictions for each patch. These patches were
then assembled back together to create the complete
volume. Similar to the method described in section
3.3.3, a spline-based method was used to handle the
overlapping between patches and reduce the artifacts at
the borders. Finally, for the StyleGAN method 3.4.4,
since it required a style image to make the prediction,
we selected the most similar baseline scan from our
training set for each baseline scan in the test set and used
its corresponding follow-up as the style. For each pair of
images, we extracted slices from the sagittal plane and
generated predictions for each slice. These slices were
then stacked back together to reconstruct the complete
volume.

After obtaining the predictions, we applied postpro-
cessing to all the methods and then calculated the sim-
ilarity results with the follow-up scans. These results
are shown in Table 5, and the predicted images are dis-
played in Figure 5.

As shown in Table 5 and Figure 5, the predictions
of most methods show results worse than the LB, with
the MPGAN + Segmentation Loss method 3.4.2 being
the only one that improved all metrics with a p-value <
0.01. Therefore, we selected it as the best GAN-based
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Table 5: GAN-Based Methods Results - Similarities with Follow-up

Method SSIM % ↑ Mean dice%
CSF ↑ GM ↑ WM ↑

MPGAN 92.1 ± 0.9 88.1 ± 3.1 72.2 ± 2.0 86.2 ± 1.6
MPGAN+seg 94.9 ± 0.7 90.7 ± 3.2 81.4 ± 2.2 91.0 ± 1.3
MGAN 92.6 ± 0.9 89.2 ± 2.9 72.7 ± 2.0 87.1 ± 1.5
StyleGAN 92.8 ± 0.8 *82.4 ± 7.9 75.2 ± 1.8 87.1 ± 1.1

Similarity metrics between GAN-based methods predictions and
follow-up scans. The best method is indicated in bold, and values
lower than the LB are underlined. * indicates p-values > 0.01. ↑
higher is better.

Figure 5: GAN-based Methods Predictions. Predicted T1w images,
segmentations of the three main tissues, and difference images with
respect to the follow-up scans.

method.

4.3. Best Methods Evaluation

Tissue Based Analysis — After selecting the best
methods from each family, we conducted analyses
based on cortical and subcortical structures to assess the
ability of the predictions to capture subtle details. The
structures selected for this analysis are presented in Fig-
ure 6. First, we assessed the volumetric changes of each
structure using the VF to verify if the volumetric expan-
sions or contractions were as expected. These results
are shown in Table 6. Subsequently, we assessed the
overlap and the volume differences between the struc-
tures from the predicted image and the actual follow-up
using the Dice coefficient and ASPVC. These results are
shown in Table 7 and 8.

Atrophy Analysis — We also performed an analy-
sis based on the BPF to verify if the brain atrophy in
the predicted images was similar to that in the actual
follow-ups. During this analysis, we divided the test set
into three groups with high, medium, and low BPF. This
division allowed us to evaluate the predicted results for
each group and verify the methods’ performance. The
results of this evaluation are presented in Figure 7.

Visual Results — Finally, we performed a visual in-
spection to determine if the computed metrics were con-
sistent with the predicted scans. Figure 8 shows the
predicted images of three individuals from each atro-
phy group. In this inspection, we also took into account
the obtained segmentation highlighting the cortical and
subcortical structures studied, as well as the difference
image between the predictions and the actual follow-up.

Figure 6: Brain Structures Relevant to Brain Aging. Eleven struc-
tures known to undergo marked changes with aging, used in this work
to evaluate the accuracy of the predictions.

5. Discussion

Our research focused on determining the feasibility of
predicting structural brain changes in healthy adults of
around 60 years old over a nine-year period using 3D
T1w MR images. We aimed to compare the accu-
racy of DF-based methods and GAN-based methods in
predicting brain changes, evaluate their predictions in
terms of image similarity, regional brain changes ac-
curacy, and overall atrophy measured by the BPF, and
assess their reliability in capturing the subtle and vari-
able changes associated with healthy aging. As the re-
sults indicate, predicting brain changes during aging in
a healthy population is indeed feasible, thereby answer-
ing our first research question. For almost all metrics,
the best DF-based method outperformed the best GAN-
based method. This suggests that DF-based methods
remain superior for predicting longitudinal changes, as
supported by our literature review.

5.1. Best Methods Comparison

Both visual and metrics results revealed that the DL
and GAN methods effectively captured the volumetric
changes of the ventricles. Similarly, the DF method
accurately predicted changes (p-value < 0.01) in brain
structures known to undergo marked changes in aging,
particularly the thalamus and cortex (Choi et al., 2022;
Fujita et al., 2023; Raz et al., 2005), as can be seen in
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Table 6: Volume Fraction - Best methods Results

Metric lat. vent. ↑ hippo. thala. cortex ent. cortex inf. temp. sup. par. mid. fron. sup. fron. precuneus cuneus

Baseline 1.83±0.8 0.69±0.1 1.07±0.1 37.5±0.8 0.26±0.0 2.25±0.1 1.57±0.2 1.77±0.1 3.85±0.2 1.41±0.1 0.68±0.1
Follow-up 2.50±1.2 0.68±0.1 1.04±0.1 36.7±0.9 0.26±0.0 2.14±0.1 1.54±0.2 1.68±0.1 3.70±0.2 1.44±0.1 0.70±0.1
Best-DF 2.47±1.0 0.70±0.1 1.03±0.1 37.3±0.8 0.29±0.0 2.24±0.1 1.54±0.1 1.74±0.1 3.75±0.2 1.40±0.1 0.68±0.1
Best-GAN 2.69±1.1 0.66±0.1 0.98±0.1 38.6±0.8 0.28±0.0 2.41±0.1 1.59±0.2 1.77±0.1 3.98±0.2 1.48±0.1 0.68±0.1

Volume Fraction (VF) of the selected tissues for the baseline and follow-up scans and the predictions of the best methods. ↑ indicates that the
volume should increase with respect to the baseline; if no arrow is present, the volumes are expected to decrease. Underlined values indicate that
the volume change is not possible with respect to the baseline.

Table 7: Dice Coefficient % - Best Methods Results

Metric lat. vent. hippo. thala. cortex ent. cortex inf. temp. sup. par. mid. fron. sup. fron. precuneus cuneus

LB 82.6±5.4 90.9±2.7 89.5±3.5 79.3±2.6 79.9±4.6 79.2±2.3 73.2±5.4 70.2±6.6 75.4±4.9 80.5±2.9 77.3±3.5
Best-DF 91.3±3.2 *91.1±2.3 93.4±1.9 83.0±2.5 *81.3±3.9 82.6±2.3 75.9±5.4 78.4±4.3 82.4±7.0 81.6±2.8 *78.0±3.5
Best-GAN 89.7±3.8 89.5±2.6 91.8±1.6 80.1±2.2 78.3±3.8 79.9±2.5 71.4±5.2 76.5±4.5 80.3±6.7 *78.5±2.9 *72.4±3.8

Dice coefficients of the selected tissues between the best methods and the follow-up scans. The initial Dice coefficient of the selected tissues
between the baseline and follow-up scans is also shown as the Lower Bound (LB). The highest Dice coefficients between the best methods are
indicated in bold (these values should also be higher than the LB). Values lower than the LB are underlined. * indicates p-values greater than 0.01.
Note that higher Dice coefficients indicate better performance.

Table 8: Absolute Symmetrized Percent Volume Change - Best Methods Results

Metric lat. vent. hippo. thala. cortex ent. cortex inf. temp. sup. par. mid. fron. sup. fron. precuneus cuneus

UB 29.5±12 2.68±2.4 3.60±2.8 2.41±1.12 4.60±4.7 5.15±2.2 3.61±2.7 5.29±2.7 4.12±2.0 2.45±1.8 3.38±2.5
Best-DF 10.2±7.9 3.28±2.8 3.12±2.5 1.99±1.06 10.4±6.1 5.10±2.4 *2.99±2.1 3.87±2.4 1.79±1.7 2.81±2.0 3.23±2.5
Best-GAN 13.6±9.9 3.29±2.2 *5.94±3.5 5.21±1.45 7.70±6.1 *12.0±3.1 *4.59±3.5 5.44±2.7 7.37±3.0 *3.54±2.6 *3.83±2.9

Absolute Symmetrized Percent Volume Change (ASPVC) of the selected tissues between the best methods and the follow-up scans. The initial
ASPVC of the selected tissues between the baseline and follow-up scans is also shown as the Upper Bound (UB). The lowest ASPVC values are
indicated in bold (these values should also be lower than the UB). Values lower than the UB are underlined. * indicates p-values greater than 0.01.
Note that Lower ASPVC values indicate better performance.

Tables 6, 7 and 8, demonstrating its capability to pre-
dict subtle changes in brain structures undergoing vol-
ume loss during aging. However, for other critical brain
structures in aging, such as the hippocampus, entorhi-
nal cortex, and precuneus, the DF method was unable
to predict volume changes. This discrepancy may be
due to the small size of these structures compared to the
previous two, making them more challenging to predict.
Additionally, there may be some segmentation errors as
we observed unrealistic increases in volume in the ac-
tual follow-up scan in the precuneus and cuneus (see
Table 6). In contrast, the GAN method did not show
consistent predictions for any of these regions across
the three metrics used, indicating a lack of sensitivity
for brain structures other than the ventricles.

In the BPF analysis, the average results indicated
a decrease in BPF in predictions made with the DF
method, suggesting that brain atrophy was captured.
However, in the GAN method, BPF tended to remain
the same or even increase, which is unlikely in the ag-
ing brain of healthy individuals over a nine-year period
(Fujita et al., 2023). The analysis showed that in the
group with low BPF, the GANs results deviate much
more from real predictions than the prediction by DL.
This indicated that the method is less sensitive in indi-
viduals with accelerated brain aging. In contrast, pre-
dictions using the DF method showed that it was robust
for all three BDF groups. These results were expected in
the case of DF-based methods because, if an individual
has low BPF (i.e., marked brain atrophy), the DF meth-

ods apply changes based on individuals with similarly
low BPF, as these would be the most similar, thereby
maintaining this trend in the prediction. The same prin-
ciple applies to individuals with other BPF levels. The
limitations of GANs may stem from the network’s bias
towards subjects with medium BPF fractions. Figure 7
shows that the means of the different groups in the GAN
method are close to each other compared to the DF
method or baseline/follow-up scans. A solution for this
problem could be adding a hyperparameter to the net-
work indicating that the individual has a high, medium,
or low BPF at baseline, forcing the network to main-
tain appropriate BPF levels in predictions. This strategy
has already been implemented in some studies predict-
ing brain changes in patients with Alzheimer’s disease
(Ravi et al., 2019; Xia et al., 2021).

5.2. DF-Based Methods Analysis

A main finding in this family of methods was the val-
idation of our hypothesis, that it is possible to use
brain changes from known individuals to predict brain
changes in others. The proof of our hypothesis is pri-
marily shown in Table 3, but it can also be seen in Table
4 and Figure 4. Comparing the results of the best post-
processed method with the upper bound indicates that
registering with a DF obtained from individuals with
similar structures yields results close to registering with
the ground truth deformations.

As observed in Table 4, variations in results by chang-
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Figure 7: Brain Parenchyma Fraction (BPF) - Best Methods Results. (A) BPF of all individuals for the Baseline (Red), Follow-Up (Purple),
Best DF-based Result (Blue), and Best GAN-based Result (Green). (B) BPF divided into groups by percentiles based on the BPF of the baseline:
High BPF includes the 0-33 percentile (28 individuals), Medium BPF includes the 33-66 percentile (28 individuals), and Low BPF includes the
66-100 percentile (27 individuals).

ing hyperparameters were minimal, mainly affecting
CSF and GM results slightly. However, the differ-
ences between local and non-local methods were much
more pronounced, highlighting the potential of non-
local methods to capture individual deformations and
better adapt to the variability between individuals (Igle-
sias and Sabuncu, 2014), rather than calculating a global
deformation average for the entire brain.

Despite the tissue-based method potentially being a
more targeted approach for brain images, it did not
yield better results than the patch-based method. This
could be because the deformation field was obtained
by non-overlapping tissues, leading to implausible de-
formations at the edges of each tissue due to abrupt
changes that affects the inferred DF (Karacali and Da-
vatzikos, 2006). A possible future solution could be to
individually enlarge each tissue so they overlap and then
calculate an average at their edges, which would avoid
these abrupt deformations.

Another important point is that the B-spline method
produced good visual results with low values for n. This
suggests that performing a more exhaustive B-spline
registration and slightly increasing n could yield even
better metrics. However, this would come with a sig-
nificantly higher computational cost compared to other
methods due to the extra registrations.

5.3. GAN-Based Methods Analysis

For this family of methods, one of the most signifi-
cant finding was that the segmentation layer in the MP-
GAN+seg method outperformed the results of the MP-
GAN and all other GAN methods (see Table 5). More-
over, this was the only GAN method that did not worsen
the lower bound. This demonstrated that guiding GANs
with tissue losses is an effective approach for improv-
ing the accuracy of predictions in brain changes (Zhang
et al., 2018).

An unexpected result was that training with 3D
patches using MGAN yielded slightly better results than

training with the full volume using MPGAN. More no-
tably, the use of 2D slices with StyleGAN achieved su-
perior results in both GM and the global image metric
compared to the previous two methods. These results
could be due to several reasons, but it is likely that one
of the main factors was that training with smaller inputs
allowed the creation of deeper networks that captured
more image features and made more detailed predic-
tions (Brown et al., 2020)

As seen in the results provided by the StyleGAN net-
work, this network tried to preserve the individuals’
identity, but there were still some notable changes in
the overall brain shape that do not usually happen in
brain aging of healthy individuals (see Figure 5). These
problems were not found in the other GAN methos that
used baseline-to-follow-up training with longitudinal
images, allowing better maintenance of the global struc-
ture and the individual’s identity (Peng et al. (2021),
Huang et al. (2022))

5.4. Limitations of the Best Method

Despite the promising results by the best DF method, it
still had some limitations.

First, the volume changes are restricted to possi-
ble variations within the population, making it impos-
sible to capture individuals with changes outside this
range. This limits the ability to observe abrupt changes,
as most individuals in our population exhibit smaller
changes.

Another limitation is that the dataset deformations
have a specific resolution of 193x229x193, making it
impossible to apply this method to new images with dif-
ferent dimensions without rescaling, which can lead to
loss of detail. This issue can potentially be addressed
by creating multi-resolution deformation datasets or by
using deep learning techniques to resize the images,
thereby reducing the loss of information (Umirzakova
et al., 2023).

Finally, as mentioned initially, there was an inability
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Figure 8: Best Methods Predictions. Baseline, Follow-Up, Best DF-based Prediction, and Best GAN-Based Prediction for three individuals.
The axial plane is shown on the left, the sagittal plane in the center, and the coronal plane on the right. Each plane contains the prediction, the
segmentation of the selected tissues (see Figure 6), and the difference with respect to the Follow-Up. (A) Individual with low BPF, (B) Individual
with mean BPF, (C) Individual with high BPF.

to accurately predict changes in small brain regions such
as the hippocampus, entorhinal cortex. This is a signif-
icant drawback, as these regions are crucial for the in-
depth study of structural brain changes in aging (Fujita
et al., 2023).

These three are the main limitations, although we
know there may be others since this method has not
been tested with images from other datasets.

5.5. Challenges of the Project

One of the main challenges of this project was attempt-
ing to predict the evolution of structural brain change
with only two scans, assuming that the baseline scan had
enough information in it to predict the follow-up. How-
ever, despite demonstrating that similar participants ex-

perienced similar brain aging, there were still specific
changes in the brain of each participant that could only
be calculated by having more time points between the
baseline and the follow-up scans to measure the magni-
tude of changes for individuals in each brain region.

Another challenge was that the time between scans
was quite long (around nine years). This causes much
more variability between participants, as brain defor-
mation is heavily affected by each individual’s sociode-
mographic, health, genetics and lifestyle, and over nine
years, many changes can occur (Mulugeta et al., 2022).

Another major challenge, was that most brain
changes were quite subtle for most individuals. This led
to very similar baseline and follow-up scans, making the
visual evaluation of brain volume changes difficult.
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5.6. Future Work

Future research could explore the integration of both
strategies by introducing DF priors into GANs to guide
volumetric changes. Additionally, incorporating diverse
medical data from electronic health records or blood
tests could further enhance the accuracy of these meth-
ods.

Enhancing GANs with segmentations that include a
broader range of tissues, particularly those exhibiting
significant changes during aging, could yield improved
results. This could be accomplished by integrating an
additional tissue segmentation network (Yu et al., 2022)
and incorporating a loss function based on these tis-
sues. However, this approach would necessitate sub-
stantially higher computational resources and result in
slower training times.

Moreover, during this master’s thesis, in collabora-
tion with the computer science department, we experi-
mented with a 2D diffusion model using autoencoders.
The results were comparable to those obtained with the
MGAN method but demonstrated greater stability dur-
ing training. This suggests that future work focused on
diffusion models holds significant promise.

6. Conclusions

This study investigated the prediction of structural brain
changes in healthy adults over a nine-year period using
3D T1-weighted MRI images, comparing DF-based and
GAN-based methods.

DF-based methods, based on the hypothesis that brain
changes in some individuals can be used to predict
changes in others individual from the same population,
utilized multi-atlas techniques to combine volumetric
changes from a subset of the population. Regional
patch-based methods were the most effective.

We implemented four GAN methods based on recent
work predicting brain structure changes in infants and
patients with Alzheimer’s disease, adapting them to our
research questions. These methods aimed to train GANs
to learn aging-related brain changes. However, most
GAN methods were inaccurate in their predictions, with
the exception of one model to which we added segmen-
tation constraints.

Comparing the best methods from each family, DF-
based methods outperformed GAN-based methods in
nearly all metrics, capturing subtle changes in the tha-
lamus and cortex. GAN methods predicted ventricular
changes but lacked sensitivity for other structures. DF-
based methods struggled with small regions like the hip-
pocampus. DF-based methods were robust in predicting
brain atrophy across varying BPF, while GAN methods
were less accurate, especially for low BPF individuals.

This study provides a foundation for future research
in brain change prediction, highlighting the effective-
ness of DF-based methods and suggesting improve-

ments for GAN methods. Future work could explore
combining DF and GAN approaches, incorporating ad-
ditional medical data, guiding GANs with more com-
prehensive segmentations, and exploring diffusion mod-
els.
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A. T1w MR Images Details

Table 9: MRI Sequence Parameters

Dataset Matrix size NSA TR (ms) TE (ms) Flip-angle Slice thickness (mm) Gap (mm) Overlap (mm) FOV (mm)

HUNT3 192x192 1 10.2 4.1 10° 1.2 0 0 240
HUNT4 256x256 - 7.7 3.092 8° 1.0 0 0 256

Parameters of the MRI sequence for HUNT3 and HUNT4 dataset, including matrix size, number of signal averages (NSA), repetition time (TR),
echo time (TE), flip-angle, slice thickness, gap, overlap, and field of view (FOV).

B. Used Parameter for Non-Rigid Registration

Table 10: Parameters Used in the B-Spline Transformation

Parámetro Valor

UseDirectionCosines true
Registration MultiMetricMultiResolutionRegistration
Interpolator BSplineInterpolator
ResampleInterpolator FinalBSplineInterpolator
Resampler DefaultResampler
FixedImagePyramid FixedRecursiveImagePyramid
MovingImagePyramid MovingRecursiveImagePyramid
Optimizer AdaptiveStochasticGradientDescent
Transform BSplineTransform
Metric AdvancedNormalizedCorrelation, TransformBendingEnergyPenalty
FinalGridSpacingInVoxels 4 4 4
NumberOfHistogramBins 32
Metric0Weight 1.0
Metric1Weight 0.1
NumberOfResolutions 2
ImagePyramidSchedule 1 1 1 1 1 1
MaximumNumberOfIterations 1000
MaximumStepLength 0.117188
NumberOfSpatialSamples 2048
ImageSampler Random
BSplineInterpolationOrder 1
FinalBSplineInterpolationOrder 3

Most important parameters used in the B-Spline registration to create the DF dataset used in the DF-based family.
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