

NeuroSculpt: Forecasting Brain Structure 9 Years Ahead Using Structural MRI

Universitat

de Girona

Agustin Lathulerie, Asta Håberg

INTRODUCTION

As people age, brain tissue loss affects cognition, making early detection of abnormal changes in healthy individuals crucial to prepare for disease risk and interventions. predicting these changes is However, challenging due to costly continuous MRI studies. To address this, we propose different machine learning alternatives to predict nine years ahead brain changes in T1w MR images.

METHODOLOGY

Data – 703 individuals with T1w MR scans from HUNT study **Preprocessing** – FreeSurfer / FastSurfer

Methods – 8 methods with 2 different approaches based on:

- Deformation Fields (DFs) \bullet
- Generative adversarial Networks (GANs)

Evaluation – Dice coefficient, tissue volume differences, Brain Parenchymal Fraction (BPF) and image similarity.

DISCUSSION

- Predicting structural brain changes is possible in healthy population.
- DF approaches capture more detailed changes than GAN approaches.
- Better predictions were obtained for the ventricles, thalamus, cortex and compared to the hippocampus.

GAN methods

STATISTICS

Comp.	Ventricles	Cortex	Thalamus	Hipoc.
	Dice coefficient ↑			
Baseline	82.6 ± 5.4	79.2 ± 2.6	89.5 ± 3.5	90.9 ± 2.7
DF-pred.	91.3 ± 3.2	83.0 ± 2.5	93.4 ± 1.9	91.1 ± 2.3
GAN-pred.	89.7 ± 3.8	80.1 ± 2.2	91.7 ± 1.6	89.5 ± 2.6
	ASPVC ↓			
Baseline	29.5 ± 12	2.41 ± 1.1	3.60 ± 2.8	2.68 ± 2.4
DF-pred.	10.2 ± 7.9	1.99 ± 1.1	3.12 ± 2.5	3.28 ± 2.8
GAN-pred.	13.6 ± 9.9	5.21 ± 1.5	5.94 ± 3.5	3.29 ± 2.2
Table 1. Dice coefficient and absolute tissue difference (ASDVC) with				

Table I: Dice coefficient and absolute tissue difference (ASPVC) with respect to the follow-up. \uparrow Higher is better, \downarrow Lower is better

VISUAL RESULTS

Fig. 1: Initial image, expected image, and best predictions with both methods.

PREPROESSING

